The Physics of Clinical MR Taught Through Images (4th Edition)


Download The Physics of Clinical MR Taught Through Images (4th Edition) written by Val M. Runge, Wolfgang Nitz, Johannes Thomas Heverhagen in PDF format. This book is under the category Medicine and bearing the isbn/isbn13 number 1626234272/9781626234277. You may reffer the table below for additional details of the book.

Category: Tag:


The Physics of Clinical MR Taught Through Images 4th Edition (PDF) by Val Runge; Wolfgang Nitz; and Johannes Heverhagen presents a unique and highly practical approach to understanding the physics of magnetic resonance imaging. Each physics topic is described in user-friendly language and accompanied by very high-quality graphics and/or images. The visually rich format provides a readily accessible tool for learning; leveraging; and mastering the powerful diagnostic capabilities of MRI.

– Physics of Clinical MR Taught Through Images 4e PDF –

Key Features

  • A handy appendix provides a quick reference of acronyms; which often differ from company to company.
  • Cutting-edge topics including contrast-enhanced MR angiography; perfusion; spectroscopy; and advanced parallel imaging/data sparsity techniques.
  • More than 700 images; anatomical drawings; clinical charts; tables; and diagrams; including magnetization curves and pulse sequencing; facilitate acquisition of highly technical content.
  • Discussion of groundbreaking hardware and software innovations; such as 7 T; MR-PET; 4D flow; CAIPIRINHA; interventional MR; radial acquisition; simultaneous multislice; and compressed sensing.
  • Eight systematically organized sections cover core topics: hardware and radiologic safety; basic image physics; basic and advanced image acquisition; flow effects; techniques specific to the brain; heart; liver; breast; and cartilage; management and reduction of artifacts; and improvements in MRI diagnostics and technologies.

The breadth of coverage; rich visuals; and succinct text make this digital PDF manual the perfect reference for practicing radiologists; radiology residents; researchers in MR; and technologists.

NOTE: No online codes are included with this purchase. Only The Physics of Clinical MR Taught Through Images 4th edition PDF eBook is included.

Additional information


Val M. Runge, Wolfgang Nitz, Johannes Thomas Heverhagen


Thieme; 4th edition




338 pages









Table of contents

Table of contents :
The Physics of Clinical MR Taught Through Images
Title Page
Section I. Hardware
1 Components of an MR Scanner
2 MR Safety: Static Magnetic Field
3 MR Safety: Gradient Magnetic and Radiofrequency Fields
4 Radiofrequency Coils
5 Multichannel Coil Technology: Part 1
6 Multichannel Coil Technology: Part 2
7 Open MR Systems
8 Magnetic Field Effects At 3 T and Beyond
9 Mid-Field, High-Field, and Ultra-High-Field (1.5, 3, 7 T)
10 Advanced Receiver Coil Design
11 Advanced Multidimensional RF Transmission Design
Section II. Basic Imaging Physics
12 Imaging Basics: k-space, Raw Data, Image Data
13 Image Resolution: Pixel and Voxel Size
14 Imaging Basics: Signal-to-Noise Ratio
15 Imaging Basics: Contrast-to-Noise Ratio
16 Signal-to-Noise Ratio versus Contrast-to-Noise Ratio
17 Signal-to-Noise Ratio in Clinical 3 T
18 Slice Orientation
19 Multislice Imaging and Concatenations
20 Number of Averages
21 Slice Thickness
22 Slice Profile
23 Slice Excitation Order (in Fast Spin Echo Imaging)
24 Field of View (Overview)
25 Field of View (Phase Encoding Direction)
26 Matrix Size: Readout
27 Matrix Size: Phase Encoding
28 Partial Fourier
29 Image Interpolation (Zero Filling)
30 Specific Absorption Rate
Section III. Basic Image Acquisition
31 T1, T2, and Proton Density
32 Calculating T1 and T2 Relaxation Times (Calculated Images)
33 Spin Echo Imaging
34 Fast Spin Echo Imaging
35 Fast Spin Echo: Reduced Refocusing Angle
36 Driven-Equilibrium Fourier Transformation (DEFT)
37 Reordering: Phase Encoding
38 Magnetization Transfer
39 Half Acquisition Single-Shot Turbo Spin Echo (HASTE)
40 Spoiled Gradient Echo
41 Refocused (Steady State) Gradient Echo
42 Echo Planar Imaging
43 Inversion Recovery: Part 1
44 Inversion Recovery: Part 2
45 Fluid-Attenuated IR with Fat Saturation (FLAIR FS)
46 Fat Suppression: Spectral Saturation
47 Water Excitation, Fat Excitation
48 Fat Suppression: Short Tau Inversion Recovery (STIR)
49 Fat Suppression: Phase Cycling
50 Fat Suppression: Dixon
51 3D Imaging: Basic Principles
52 Contrast Media: Gadolinium Chelates with Extracellular Distribution
53 Contrast Media: Gd Chelates with Improved Relaxivity
54 Contrast Media: Other Agents (Non-Gadolinium)
Section IV. Advanced Image Acquisition
55 Dual-Echo Steady State (DESS)
56 Balanced Gradient Echo: Part 1
57 Balanced Gradient Echo: Part 2
58 PSIF: The Backward-Running FISP
59 Constructive Interference in a Steady State (CISS)
60 TurboFLASH
62 3D Imaging: MP-RAGE
63 3D Imaging: SPACE
64 Susceptibility-Weighted Imaging
65 Volume Interpolated Breath-Hold Examination (VIBE)
66 Diffusion-Weighted Imaging
67 Multi-Shot EPI
68 Diffusion Tensor Imaging
69 Blood Oxygen Level-Dependent (BOLD) Imaging: Theory
70 Blood Oxygen Level-Dependent (BOLD) Imaging: Applications
71 Proton Spectroscopy (Theory)
72 Proton Spectroscopy (Chemical Shift Imaging)
73 Simultaneous Multislice
Section V. Flow
74 Flow Effects: Fast and Slow Flow
75 Phase Imaging: Flow
76 2D Time-of-Flight MRA
77 3D Time-of-Flight MRA
78 Flip Angle, TR, MT, and Field Strength (in 3D TOF MRA)
79 Phase Contrast MRA
80 4D Flow MRI
81 Advanced Non-Contrast MRA Techniques
82 Contrast-Enhanced MRA: Basics; Renal, Abdomen
83 Contrast-Enhanced MRA: Carotid Arteries
84 Contrast-Enhanced MRA: Peripheral Circulation
85 Dynamic CE-MRA (TWIST)
86 Dynamic Susceptibility Perfusion Imaging
87 Arterial Spin Labeling
Section VI. Tissue-Specific Techniques
88 Brain Segmentation, Quantitative MR Imaging
89 Cardiac Morphology
90 Cardiac Function
91 Cardiac Imaging: Myocardial Perfusion
92 Cardiac Imaging: Myocardial Viability
93 T1/T2/T2* Quantitative Parametric Mapping in the Heart
94 MR Mammography: Dynamic Imaging
95 MR Mammography: Silicone
96 Hepatic Fat Quantification
97 Hepatic Iron Quantification
98 Elastography
99 Magnetic Resonance Cholangiopancreatography (MRCP)
100 Cartilage Mapping
Section VII. Artifacts, Including Those Due to Motion, and the Reduction Thereof
101 Aliasing
102 Truncation Artifacts
103 Motion: Ghosting and Smearing
104 Motion Reduction: Triggering, Gating, Navigator Echoes
105 Abdomen: Motion Correction
108 Radial VIBE (StarVIBE)
110 Filtering Images (to Reduce Artifacts)
111 Geometric Distortion
112 Chemical Shift: Sampling Bandwidth
113 Artifacts: Magnetic Susceptibility
114 Maximizing Magnetic Susceptibility
115 Artifacts: Metal
116 Minimizing Metal Artifacts
117 Gradient Moment Nulling
118 Spatial Saturation
119 Shaped Saturation
120 Advanced Slice/Sub-Volume Shimming
121 Flow Artifacts
Section VIII. Further Improving Diagnostic Quality, Technologic Innovation
122 Faster and Stronger Gradients: Part 1
123 Faster and Stronger Gradients: Part 2
124 Faster and Stronger Gradients: Part 3
125 Image Composing
126 Filtering Images (to Improve SNR)
127 Parallel Imaging: Part 1
128 Parallel Imaging: Part 2
130 Zoomed EPI
131 Compressed Sensing
132 Cardiovascular Imaging: Compressed Sensing
133 Interventional MR
134 7 T Brain
135 7 T Knee
136 Continuous Moving Table
137 Integrated Whole-Body MR-PET
138 3D Evaluation: Image Post-Processing
139 Automatic Image Alignment
140 Workflow Optimization
Section IX. Appendix
141 Acronyms

Recent Posts

Sorry, no posts were found.